Collaborative Filtering for Information Recommendation Systems

نویسندگان

  • Anne Yun-An Chen
  • Dennis McLeod
چکیده

In order to draw users’ attention and to increase their satisfaction toward online information search results, search-engine developers and vendors try to predict user preferences based on users’ behavior. Recommendations are provided by the search engines or online vendors to the users. Recommendation systems are implemented on commercial and nonprofit Web sites to predict user preferences. For commercial Web sites, accurate predictions may result in higher selling rates. The main functions of recommendation systems include analyzing user data and extracting useful information for further predictions. Recommendation systems are designed to allow users to locate preferable items quickly and to avoid possible information overload. Recommendation systems apply data-mining techniques to determine the similarity among thousands or even millions of data. Collaborative-filtering techniques have been successful in enabling the prediction of user preferences in recommendation systems (Hill, Stead, Rosenstein, & Furnas, 1995, Shardanand & Maes, 1995). There are three major processes in recommendation systems: object data collections and representations, similarity decisions, and recommendation computations. Collaborative filtering aims at finding the relationships among new individual data and existing data in order to further determine their similarity and provide recommendations. How to define the similarity is an important issue. How similar should two objects be in order to finalize the preference prediction? Similarity decisions are concluded differently by collaborative-filtering techniques. For example, people that like and dislike movies in the same categories would be considered as the ones with similar behavior (Chee, Han, & Wang, 2001). The concept of the nearest-neighbor algorithm has been included in the implementation of recommendation systems (Resnick, Iacovou, Suchak, Bergstrom, & Riedl, 1994). The designs of pioneer recommendation systems focus on entertainment fields (Dahlen, Konstan, Herlocker, Good, Borchers, & Riedl, 1998; Resnick et al.; Shardanand & Maes; Hill et al.). The challenge of conventional collaborative-filtering algorithms is the scalability issue (Sarwar, Karypis, Konstan, & Riedl, 2000a). Conventional algorithms explore the relationships among system users in large data sets. User data are dynamic, which means the data vary within a short time period. Current users may change their behavior patterns, and new users may enter the system at any moment. Millions of user data, which are called neighbors, are to be examined in real time in order to provide recommendations (Herlocker, Konstan, Borchers, & Riedl, 1999). Searching among millions of neighbors is a time-consuming process. To solve this, item-based collaborative-filtering algorithms are proposed to enable reductions of computations because properties of items are relatively static (Sarwar, Karypis, Konstan, & Riedl, 2001). Suggest is a top-N recommendation engine implemented with item-based recommendation algorithms (Deshpande & Karypis, 2004; Karypis, 2000). Meanwhile, the amount of items is usually less than the number of users. In early 2004, Amazon Investor Relations (2004) stated that the Amazon.com apparel and accessories store provided about 150,000 items but had more than 1 million customer accounts that had ordered from this store. Amazon.com employs an item-based algorithm for collaborative-filtering-based recommendations (Linden, Smith, & York, 2003) to avoid the disadvantages of conventional collaborative-filtering algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Effect of Rating Time for Cold Start Problem in Collaborative Filtering

Cold start is one of the main challenges in recommender systems. Solving sparsechallenge of cold start users is hard. More cold start users and items are new. Sine many general methods for recommender systems has over fittingon cold start users and items, so recommendation to new users and items is important and hard duty. In this work to overcome sparse problem, we present a new method for rec...

متن کامل

QoS-based Web Service Recommendation using Popular-dependent Collaborative Filtering

Since, most of the organizations present their services electronically, the number of functionally-equivalent web services is increasing as well as the number of users that employ those web services. Consequently, plenty of information is generated by the users and the web services that lead to the users be in trouble in finding their appropriate web services. Therefore, it is required to provi...

متن کامل

یک سامانه توصیه‎گر ترکیبی با استفاده از اعتماد و خوشه‎بندی دوجهته به‎منظور افزایش کارایی پالایش‎گروهی

In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006